
The Behavior, Constraint, and Scenario (BeCoS) Tool:

A Web-Based Software Application for Modeling Behaviors

and Scenarios

Justin D. Kaderka,1 Matthew L. Rozek,2 John K. Arballo,3 David A. Wagner,4 and Michel D. Ingham5

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA

The Behavior, Constraint, and Scenario (BeCoS) tool has been developed to allow

engineers to specify system and component behaviors. The tool is a web application that is

developed in JavaScript and uses the React framework for the user interface and Redux for

maintaining application state. The foundation of the tool is its underlying ontology, which

expands upon a previously-defined behavior ontology with a scenario ontology. The behavior

ontology includes elements like behaving elements, state variables, parameters, and

constraints, while the scenario ontology includes core constructs like activities, temporal

constraints, and timepoints. BeCoS allows users to easily create behaving elements and to

specify their state variables, parameters, state machines, and constraints. BeCoS also allows

users to develop temporal constraint networks that specify constraints on component states

over time. BeCoS is a prototype tool that has been deployed and tested by systems engineers

on the Europa Clipper project, which generated several use cases and helped steer its current

developmental effort. By enabling systems engineers to specify behavior in a semantically-

rigorous manner, BeCoS is an enabling technology for analyses that previously could not be

performed, and when exporting its model to other tools, allows for consistent behavior models

to be used.

I. Nomenclature

APGEN = Activity Plan Generator

BeCoS = Behavior, Constraint, and Scenario tool

COTS = Commercial-off-the-shelf

FDD = Functional Description Documents

IMCE = Integrated Model-Centric Engineering

MBSE = Model-Based Systems Engineering

II. Introduction

ehavior is a critical aspect of robotic spacecraft that engineers must characterize. Behaviors of individual

components aggregate into the system behaviors needed to complete the mission. These characterizations of

behavior, captured in the form of a behavioral system model, can be used for many different purposes, including the

many analyses of the spacecraft system that are needed across the engineering lifecycle (e.g. power/energy or data

analyses to name a few). Moreover, accurate and complete descriptions of behavior in the development phase of the

lifecycle are needed so that engineers can develop and implement the flight software and hardware according to a

specification.

 In its simplest description, behavior is defined by state variable properties of a particular system component and

the values that they have over time. Behavior can be classified into either intrinsic or scenario behavior. Intrinsic

behavior describes the inherent dynamics/physics of a component, that is, all the ways that its state can change under

1 Systems Engineer, System Architectures and Behaviors.

2 Systems Engineer, Flight System Systems Engineering.

3 Scientific Applications Software Engineer, Structure of the Universe.

4 Group Supervisor, System Architectures and Behaviors.

5 Europa Clipper Project Software Systems Engineer, Project Software and Information Systems Engineering.

B

the influence of other component states and inputs. Prior work has represented intrinsic behavior in the form of “state

effects models” [1]. One example of intrinsic behavior is power consumed by a lightbulb, which is calculated from

the current and a voltage drop through the element. Scenario behavior, on the other hand, is a type of asserted, or

control, behavior that captures a particular evolution of the component’s or system’s state over time, and can be

represented either declaratively (goal-based) or imperatively (procedure-based). A declarative approach focuses on

what needs to be accomplished whereas an imperative approach focuses on how it is accomplished. Traditionally in

spacecraft design, scenario behavior has been imperatively defined, and indeed many simulation tools and

programming languages support the expression of imperative logic to describe asserted behavior. However, this

approach has become cumbersome with increasingly complex systems and it has the limitation that operational intent

has to be inferred. A declarative, goal-based, expression of scenario behavior is preferable as it explicitly describes

intent (through goals) without necessarily describing how it is accomplished, and ultimately produces a specification

of behavior that is completely verifiable [2, 3].

To date, behaviors on NASA/JPL’s robotic spacecraft have been described by systems engineers primarily through

Functional Description Documents (FDDs), in which behaviors are described textually or through informal visual

representations without further semantic meaning. This has led to discrepancies in their descriptions and, as an

example, has led to differences in interpretations between the systems engineers and flight software developers.

However, the adoption of Model-Based Systems Engineering (MBSE) presents an opportunity to model behaviors

and scenarios in a semantically-rigorous manner. Doing so early in the project lifecycle enables the systems engineer

to perform analyses and to link behavior models directly to other systems engineering tools. For example, behavior

captured in state machines could be exported to a third party execution tool to perform state reachability analyses, and

behavior information including scenarios could be exported to a mission planning tool that elaborates and schedules

activities and produces component state timelines that are ready to be executed.

However, modeling behaviors and scenarios in existing standard languages like SysML using commercial off-the-

shelf (COTS) modeling tools is a tedious process, largely because these tools have so many features (most of which

are not relevant to behavior modeling) that they are cumbersome for non-expert users. Developing behavior models

using COTS SysML modeling tools results in many user mouse-clicks even for a simple behavior model. In addition,

the semantics of SysML are not readily amenable to describing temporal constraint networks as one may want to do

for scenarios. To address such limitations in standard languages and tooling, a web-based application – the Behavior,

Constraint, and Scenario (BeCoS) tool – has been developed as a front-end for behavior modeling and specification.

BeCoS is a currently a functioning prototype that has been tested by select systems engineers on NASA/JPL’s planned

Europa Clipper mission.

III. Ontology

An ontology has been developed to sufficiently express the concepts within behavior modeling, and to provide an

underlying schema for the BeCoS tool. This ontology expands upon a previously-defined behavior ontology [4],

which describes the intrinsic behavior of components (shown in the top of Figure 1). Briefly, components that have

behavior are called behaving elements, and are associated with state variables (variables whose value is time-varying,

such as power consumed by the behaving element) and parameters (variables whose value is time invariant, such as

resistance). Element behaviors also describe behaving elements. These are a type of behavior constraint that relate

the state variables and parameters associated with a given behaving element. In addition, a state variable can be linked

to a state machine, as might be the case for a Switch behaving element that can have an Open and Closed state. A

state machine has one or more states (discrete state variable values), which themselves can participate in constraints

(StateBehavior) involving state variables and parameters associated with the selected behaving element. States are

connected with transitions and can have triggers (a command or event that must happen for the transition to execute)

and/or guards (constraints that must be true for the transition to execute).

A scenario ontology (shown in the bottom half of Figure 1) was developed to describe and specify coordination of

behaviors over time and is grounded in a timeline representation [5]. The ontology that has been developed enables

the user to express intent in a purely declarative form rather than in an imperative fashion (i.e. a step-by-step,

procedural approach). A primary construct of this ontology is the elaboration rule, or just “rule”. Elaboration rules

express recursive dependencies between goals such that the invocation of a parent goal implies the indirect invocation

of its elaborated dependents. Prior work has defined a set of elaboration rules based on causal dependencies in state

effects models [1]. Thus, the primary goals of a mission or activity are decomposed into subgoals that constrain what

and when something needs to happen without having to prescribe a strict procedure. These rules contain activities

and temporal constraints, which are constraints between two timepoints, and can specify either that the two timepoints

occur at the same time (i.e. an “equals” temporal constraint) or that one timepoint precedes the other by an exact time

or time range (e.g. a “precedes” temporal constraint). Activities are composed of a start and end timepoint, and can

assert goals through state constraints and/or schedulable constraints, which are both types of behavior constraints

(from the behavior ontology). State constraints assert the state variable that is associated with a state machine is in a

specific state for the duration of the activity (e.g. “SwitchPosition = Closed” is a state constraint, where

“SwitchPosition” is the state variable and “Closed” is the state). Schedulable constraints are identical to element

behaviors (from the behavior ontology) with the exception that these constraints apply only during the specified

activity.

Fig. 1 The ontology used by BeCoS to describe behavior modeling was developed from an existing behavior

ontology [4] and a new scenario ontology that is grounded in the timeline representation [5].

This scenario ontology expresses assertions about behavior over time that can represent different semantics

including engineering/control intent, observed history, or asserted conditions (e.g. fault conditions). Although BeCoS,

which implements a behavior model adhering to the scenario ontology, does not directly perform any particular

analysis, the specification is intended to support design/plan analyses that need to reason about the consistency of

asserted intent in the context of intrinsic behavior (constraints that can’t be relaxed), plan objectives (that can be

relaxed or changed), and other asserted facts such as fault conditions.

The combined ontology contains all the constructs necessary for modeling behavior and scenarios. It is the meta-

model used in BeCoS and in data exchange into and out of the tool. While the behavior ontology has been approved

and is institutionally-supported, the scenario ontology described here has yet to be formalized, and it may be subject

to modification and simplification during the approval process.

IV. Implementation

BeCoS is a web application that has been developed for behavior modeling. A guiding principle used during the

app’s development has been to ensure models are “correct by construction”, which is enforced through validation

checks throughout the app. A second guiding principle has been to present the user with only the relevant information

for a given scope. The website is a Node.js app6 that uses the React framework7, which is a popular framework for

user interfaces and was chosen due to the developer’s familiarity with it. The Redux library8 is used in conjunction

with React for application state management. A single, immutable, read-only state-tree is maintained; when users

interact with the app, actions are dispatched to pure functions (i.e. reducers) that update the state-tree.

A JSON file9 is the data exchange format for model information, which uses a schema adhering to the ontology.

The JSON file can be retrieved either from the local file system or a remote server database. Once a model is loaded

into BeCoS, it persists and is manipulated entirely in the browser’s memory until the model is again saved or exported

as a JSON file.

Figure 2 shows the splash page for BeCoS tool. Four buttons (tabs) at the top of the app, named “Elements”,

“Interactions”, “State Machines”, and “Scenario”, define the four sections of the app, which are used to build behavior

models. The app is described in the following sections, and a simple example of a circuit is used to illustrate the app’s

capability. This example has four behaving elements: a battery, switch, lamp, and controller. In order to illuminate

the lamp, the controller must be on and the switch must be closed.

Fig. 2 Splash page of the BeCoS tool.

 In the Elements tab, the user creates and/or edits behaving elements as well as the parameters and state variables
associated with each. The Elements tab is shown in Figure 3 and displays a Lamp behaving element. As previously

discussed, parameters, such as “Luminous Efficacy”, have values that are time invariant, whereas state variables, such

as “VoltageAcrossLamp”, have values that vary with time. Attributes for each of these, such as descriptions, values,

units, and symbols, are easily editable through a Bootstrap table10.

6 https://nodejs.org/

7 https://facebook.github.io/react/

8 http://redux.js.org/

9 http://www.json.org/

10 https://getbootstrap.com/

 Behavior constraints, such as “Lumen Output”, are also created in the Elements tab through a constraint editor

(Figure 4). This editor is presented when the user selects the “Edit” button in the constraint table of the Elements tab.

The constraint editor is scoped appropriately and presents only the state variables and parameters associated with the

currently-selected behaving element, which is the Lamp in Figure 4. The user can easily create a symbolic expression

by selecting the “+” icon, which adds the variable’s symbol to the text box, or by typing the equation directly into the

text box. If the user types a variable that is non-existent or is not associated with the selected behaving element, a

validation error is issued and the user will not be able to save the constraint.

Fig. 3 Behaving elements, as well as their state variables, parameters, and constraints, are defined in the

BeCoS Elements tab. A Lamp behaving element is shown in this example model of a circuit.

Fig. 4 The constraint editor allows the user to create constraints with state variables and parameters

scoped to the selected Behaving Element.

The Interactions and State Machines tabs allow the user to further define the intrinsic behavior of components.

Interactions are defined as constraints that involve state variables and/or parameters from more than one behaving

element. In the circuit example, Kirchoff’s voltage law would be one such interaction. In the Interactions tab, the

user selects all behaving elements that are involved with a specific interaction, and then creates one or more constraints

using the constraint editor from Figure 4. However, the editor is now scoped to include state variables and parameters

from all behaving elements associated with the interaction.

The State Machines tab (Figure 5) allows the user to define state machines for state variables that are associated

with state machines, including states, transitions, constraints (on states), triggers, and guards. In the circuit example,

the Switch behaving element has a state variable called “SwitchPosition” that is associated with a state machine. It

has the following behavior: a switch in its Closed state is characterized by the constraint “deltaV=0”, and can transition

to its Open state upon receipt of an “OPEN” command; a switch in its Open state is characterized by the constraint

“i=0”, and can transition to its Closed state upon receipt of a “CLOSE” command. The visual representation of state

machines uses the D3 library11 [11], so the user can graphically add, remove, and rename states, as well as specify

transitions between states. The user can add other information to the state machine, such as state constraints, guards

and triggers, by selecting the appropriate entity and using the Bootstrap table editor below the D3 visualization. Once

defined, constraints will appear in the state icon and the triggers and guards will appear on their respective transitions

in the “Trigger [{Guard}]” syntax. Multiple state constraints and guards can be defined and they are cumulatively

interpreted with the logical “AND”.

Fig. 5 Users specify state machines through a graphical editor in the State Machines tab. Additional

information, such as state constraints and transition guards and triggers, can be added by selecting an entity

and using the table editor.

Finally, in the Scenarios tab (Figure 6), the user declaratively specifies a component’s behavior (i.e. its state) within

a temporal constraint network [6]. In the example shown in Figure 6, a rule is developed that turns the lamp on.

Initially, the switch is Open and the controller is turned Off. After five seconds, the controller is turned to Standby,

and 10 to 15 seconds later, the controller is turned On and simultaneously the switch is Closed. After 30 seconds, the

Controller is turned back to Standby, and the switch is simultaneously Opened.

Like the State Machine tab, the primary workspace of the Scenario tab is created using the D3 library. Users create

rules in this tab and add execution contexts, which representing a behaving element, to them by selecting the “+” icon

next to the behaving elements listed in the containment tree. The elements that compose a rule (i.e. activities,

timepoints, and temporal constraints) are added to the execution contexts by selecting the appropriate icon for a given

11 https://d3js.org/

element, and then clicking inside the rule workspace. Activities and precedes temporal constraints are editable within

the Inspector pane (Figure 7), where a name, state constraint, or schedulable constraint can be added to an activity or

a minimum and maximum duration can be added to a precedes temporal constraint. For the latter, these durations are

displayed on the temporal constraints in the “[min, max]” syntax (e.g. “[10, 15]”), which indicates the subsequent

timepoint occurs between 10 and 15 seconds after the preceding timepoint. Such a temporal range is acceptable, and

expected, when specifying rules declaratively, and the timepoints are only grounded when the BeCoS model is

exported to a scheduler downstream in the workflow.

Fig. 6 The Scenario tab is where users can build a temporal constraint network and declaratively assert how

component states evolve over time.

Fig. 7 In constructing a rule, users can add a name, state constraint, or schedulable constraint to an activity

through the inspector pane, which is displayed on the right side of the Scenario tab.

V. Status and Future Work

 While the BeCoS tool is currently a prototype, it has been the focus of multiple years of development and

maturation. Select systems engineers on the planned Europa Clipper mission have tested the deployed BeCoS tool

and have provided feedback. This feedback has informed use cases that are important to consider for a production

tool, and software bugs and tool improvements identified from these use cases are the focus of the current

developmental effort.

 In addition to these improvements, substantial effort will be applied this fiscal year to connect BeCoS with a JPL-

developed activity scheduler and plan generator (APGEN [7]), and Europa Clipper data will be used as a test case.

APGEN is currently being used on several flight projects, and on Europa Clipper, it is the primary tool for producing

activity timelines. Behaviors and rules are specified in the APGEN project adaptation layer, which serves as the

“input” to APGEN; an APGEN modeler manually programs this adaptation layer by interpreting behaviors from a

variety of sources including Excel spreadsheets, PowerPoint slides, emails, and verbal conversations. Upon execution,

APGEN schedules activities throughout the mission resulting in activity timelines for each modeled component. One

persistent issue with the tool is the unverifiability of the modeled system behavior. Verifiable behaviors are

particularly needed for this tool since the manual interpretation of behavior in creating the adaptation layer can lead

to an erroneous implementation. Currently, the only way a systems engineer verifies the APGEN model is by either

analyzing its outputs, which by definition is not verifying the modeled behavior (the inputs), or by inspecting the

adaptation layer, which is rarely undertaken as very few systems engineers can understand APGEN code (and even if

they could, it is in the form of distributed imperative logic, which is inherently hard to review). A more ideal and

robust approach involves the systems engineer directly specifying behavior in the BeCoS tool, which can be easily

inspected and verified. This model would be exported to the APGEN adaptation layer, and would be automatically

transformed to populate behaviors in the required syntax. This new workflow requires agreement on the type and

form of information being exchanged, and requires modifications to APGEN so that it accepts declaratively-specified
rules instead of its usual imperatively-specified scenarios.

 Another long-term issue that needs to be reconciled in BeCoS is type versus instance. A type can have many

instances. Each instance inherits behavior that is defined on the type, while each instance can be in a state that is

different from another instance. For example, a spacecraft uses a particular reaction wheel model that has a defined

behavior – this behavior would be defined on the reaction wheel type. Typically a spacecraft will have four instances

of this reaction wheel. Each instance inherits behavior defined on the reaction wheel type (so the behavior is only

defined once), while each instance can be in a different state (e.g. three of the instances can be in a high-speed state

while the fourth instance is off). Thus in BeCoS, the intrinsic behavior specified in the Element and State Machine

tabs should be specified on the type, while rules should specify behavior on instances. However, the current

implementation of BeCoS does not distinguish between type and instance; thus it is assumed that everything in BeCoS

is an instance. This is acceptable in the short-term and implies that all behavior must be duplicated for multiple

instances that would have otherwise originated from a single type.

VI. Conclusion

The BeCoS tool is a web application that was developed to enable systems engineers to easily and rigorously

specify behaviors and scenarios in a semantically-meaningful manner. This detail of modeling has yet to be performed

on flight projects earlier in their lifecycle, and doing so enables new model-checking analyses, such as state

reachability analyses or analyses that ensure rules are acyclic graphs. Additionally, this tool allows behaviors and

scenarios to be viewable and verifiable, and ultimately exported to scheduling or simulation tools, which ensures the

behaviors being analyzed are always consistent.

Acknowledgments

The authors would like to thank JPL’s Integrated Model-Centric Engineering (IMCE) initiative, which has funded

this work over the past several years. In addition, the authors would like to thank the Europa Clipper project, which

has sponsored several summer interns that have worked on BeCoS. The authors would also like to thank colleagues

that have contributed or provided guidance and direction to this developmental effort, namely: Jean-Francois Castet,

Erika Hill, Deanna Heer, Zachery Miranda, David Tsui, Thomas Kwak, Tyler Ryan, Brandon Wang, Steven Jenkins,

and Nicolas Rouquette.

The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics and Space Administration.

References

[1] Ingham, M., Rasmussen, R., Bennett, M., and Moncada, A., “Engineering Complex Embedded Systems with State Analysis

and the Mission Data System,” AIAA Journal of Aerospace Computing, Information and Communication, Vol. 2, No. 12, Dec.

2005, pp. 507-536.

[2] Dvorak, D., et al. “Goal-Based Operations: An Overview,” AIAA Infotech@Aerospace 2007 Conference, Rohnert Park, CA,

May 7-10, 2007.

[3] Jones, G., et al. “Human-Rated Automation and Robotics,” Jet Propulsion Laboratory, JPL D-66871, Pasadena, CA, 2010.

[4] Castet, J.F., et al. “Ontology and modeling patterns for state-based behavior representation,” AIAA Infotech@Aerospace

Conference, Kissimmee, FL, January 5-9, 2015.

[5] Chung, S. H., and Bindschadler, D. L., “Timeline-Based Mission Operations Architecture: An Overview,” Proceedings of the

12th International Conference on Space Operations, Stockholm, Sweden, June 11–15 2012.

[6] Dechter, R., Meiri, I., and Pearl, J., “Temporal Constraint Networks,” Artificial Intelligence 49, 1991, pp. 61-95.

[7] Maldague, P., et al. “APGEN Scheduling: 15 Years of Experience in Planning Automation,” AIAA SpaceOps Conference,

Pasadena, CA, May 5-9, 2014.

	The Behavior, Constraint, and Scenario (BeCoS) Tool: A Web-Based Software Application for Modeling Behaviors and Scenarios
	I. Nomenclature
	II. Introduction
	III. Ontology
	IV. Implementation
	V. Status and Future Work
	VI. Conclusion
	Acknowledgments
	References
	[1] Ingham, M., Rasmussen, R., Bennett, M., and Moncada, A., “Engineering Complex Embedded Systems with State Analysis and the Mission Data System,” AIAA Journal of Aerospace Computing, Information and Communication, Vol. 2, No. 12, Dec. 2005, pp. 507...
	[2] Dvorak, D., et al. “Goal-Based Operations: An Overview,” AIAA Infotech@Aerospace 2007 Conference, Rohnert Park, CA, May 7-10, 2007.
	[4] Castet, J.F., et al. “Ontology and modeling patterns for state-based behavior representation,” AIAA Infotech@Aerospace Conference, Kissimmee, FL, January 5-9, 2015.

